Problems
  1. Given a distribution uD(Rn)u \in \mathcal{D}'(\mathbb{R}^n) and a smooth function f(x)f(x) on Rn\mathbb{R}^n. Assume fu0f \cdot u \equiv 0, then
    supp(u)Z(f)={xRnf(x)=0}.\operatorname{supp}(u) \subseteq Z(f) = \{x \in \mathbb{R}^n \mid f(x) = 0\}.

  2. Consider the distribution u=n=0cnδnu = \sum_{n=0}^\infty c_n \delta_n on R\mathbb{R}. Prove that uS(R)u \in \mathcal{S}'(\mathbb{R}) if and only if there exist constants CC and pp such that for all non-negative integers nn, we have
    cnC(1+np).|c_n| \leq C(1+n^p).

  3. u=11+x2u = \frac{1}{1+x^2};

  4. u=exu = e^{-|x|};

  5. u=1x>au = 1_{x>a}, where aRa \in \mathbb{R};

  6. u=1x+i0u = \frac{1}{x+i0};

  7. u=P(x)1x>0u = P(x) 1_{x>0}, where P(x)P(x) is a polynomial with complex coefficients;

  8. Assume α>1\alpha > -1. Prove that
    1(iξ+0)1+α=Dlimϵ0+(iξ+ϵ)1α\frac{1}{(i \xi + 0)^{1+\alpha}} \overset{\mathcal{D}'}{=} \lim_{\epsilon \to 0^+} (i \xi + \epsilon)^{-1-\alpha}
    defines a distribution on R\mathbb{R}.

For α>1\alpha > -1, use Γ(z)\Gamma(z) (Gamma function) and
1(iξ+0)1+α\frac{1}{(i \xi + 0)^{1+\alpha}}
to represent the Fourier transform of u=pfx+αu = \operatorname{pf} x_+^\alpha;

  1. u=pfx+αu = \operatorname{pf} x_+^\alpha, where α<1\alpha < -1 and α\alpha is not an integer;

  2. u=eix2u = e^{-ix^2}.