Solutions
  1. We will prove that R\suppuR\Z(f)\displaystyle \mathbb{R}\backslash \operatorname{supp} u\supset \mathbb{R}\backslash Z(f). According to the definition, for any xR\suppu\displaystyle x\in \mathbb{R}\backslash \operatorname{supp}u, there exists a neighborhood Vx\displaystyle V_{x} of xx satisfying u,φ=0\displaystyle \left\langle u,\varphi \right\rangle=0 for any φC0(Vx)\displaystyle \varphi\in C_{0}^{\infty}(V_{x}). And for any xR\Z(f)\displaystyle x\in \mathbb{R}\backslash Z(f), we have f(t)0\displaystyle f(t)\neq0 for t\displaystyle t in a neighborhood of xx. We can assume that it's Vx\displaystyle V_x. Now we know, for any φC0(Vx)\displaystyle \varphi\in C_{0}^{\infty}(V_{x}), we have u,φ=uf,φf=0\displaystyle \left\langle u,\varphi \right\rangle=\left\langle u\cdot f,\frac{\varphi}{f} \right\rangle=0 because of φfC0(Vx)\displaystyle \frac{\varphi}{f}\in C_{0}^{\infty}(V_{x}) and f0\displaystyle f\neq0 in that set. So we get R\suppuR\Z(f)\displaystyle \mathbb{R}\backslash \operatorname{supp} u\supset \mathbb{R}\backslash Z(f).

  2. MSE link If cnC(1+np)|c_{n}|\le C(1+n^{p}), then we have n=1cnδn,φn=1cnδn,φCn=1(1+n)pφ(n)Csup(1+x)p+2φ(x)n=1(1+n)2=Csup(1+x)p+2φ(x)\displaystyle \left|\left\langle \sum_{n=1}^{\infty}c_{n}\delta_{n},\varphi \right\rangle\right|\le \sum_{n=1}^{\infty}\left|c_{n}\right|\left|\left\langle \delta_{n},\varphi \right\rangle\right|\le C\sum_{n=1}^{\infty}(1+n)^{p}\left|\varphi(n)\right|\le C\sup\left|(1+|x|)^{p+2}\varphi(x)\right|\sum_{n=1}^{\infty}(1+n)^{-2}=C'\sup\left|(1+\left|x\right|)^{p+2}\varphi(x)\right|. Then we know it's a tempered distribution.
    If it's known that n=1cnδn\displaystyle \sum_{n=1}^{\infty}c_{n}\delta_n is a tempered distribution and cn|c_{n}| cannot be dominated by a polynomial, then we will show the contradiction. Take an increasing subsequence {cxn}\{c_{x_{n}}\} of {cn}\{c_n\} which satisfying cxn>xnn\displaystyle c_{x_{n}}>x_{n}^{n} and let dk={xnnk=xn0kxn\displaystyle d_{k}=\begin{cases}x_{n}^{-n}&k=x_{n}\\0&k\neq x_{n}\end{cases}, then we have n=1cndn\displaystyle \sum_{n=1}^{\infty}c_{n}d_{n} diverges. Notice that φ=n=1ψn\displaystyle \varphi=\sum_{n=1}^{\infty}\psi_{n} satisfies φC(R)\displaystyle \varphi\in C^{\infty}(\mathbb{R}), where ψn(x)={dne4+1(x2n12)(x2n+12)x(2n12,2n+12)0x(2n12,2n+12)\displaystyle \psi_{n}(x)=\begin{cases}d_{n}e^{4+\frac{1}{\left(x-\frac{2n-1}{2}\right)\left(x-\frac{2n+1}{2}\right)}}&x\in\left(\frac{2n-1}{2},\frac{2n+1}{2}\right)\\0&x\notin\left(\frac{2n-1}{2},\frac{2n+1}{2}\right)\end{cases}. And φS(R)\displaystyle \varphi\in \mathcal{S}(\mathbb{R}) because dn1nk\displaystyle d_{n}\le \frac{1}{n^{k}} for any k\displaystyle k when n+\displaystyle n\to +\infty. Finally, we can get contradiction by n=1cnδn,φ=+\displaystyle \left\langle \sum_{n=1}^{\infty}c_{n}\delta_{n},\varphi \right\rangle=+\infty.

  3. According to the Fourier transform table, we know F(πe2πx)=11+ξ2\displaystyle \mathcal{F}\left(\pi e^{-2\pi|x|}\right)=\frac{1}{1+\xi^{2}}. So we have F(11+x2)=F(F(πe2πx))=πe2πξ\displaystyle \mathcal{F}\left(\frac{1}{1+x^{2}}\right)=\mathcal{F}\left(\mathcal{F}\left(\pi e^{-2\pi|x|}\right)\right)=\pi e^{-2\pi |\xi|}.

  4. We know F(ex)=24π2ξ2+1\displaystyle \mathcal{F}(e^{-|x|})=\frac{2}{4\pi^{2}\xi^{2}+1} from Fourier transform table immediately.

  5. We know F(1x0)=12(1iπξ+δ0(ξ))\displaystyle \mathcal{F}(\mathbf{1}_{x\ge0})=\frac{1}{2}\left(\frac{1}{i\pi\xi}+\delta_{0}(\xi)\right) and F(f(xa))=e2πiξaF(f(x))\displaystyle \mathcal{F}(f(x-a))=e^{-2\pi i \xi a}\mathcal{F}(f(x)), so we have F(1xa)=e2πiξa2(1iπξ+δ0(ξ))\displaystyle \mathcal{F}(\mathbf{1}_{x\ge a})=\frac{e^{-2\pi i\xi a}}{2}\left(\frac{1}{i\pi\xi}+\delta_{0}(\xi)\right).

  6. First, we know 1x+i0=p.v.1xiπδ0\displaystyle \frac{1}{x+i0}=\text{p.v.}\frac{1}{x}-i\pi\delta_{0}. Then we know F(1x+i0)=F(p.v.1x)F(iπδ0)=iπsign(ξ)iπ\displaystyle \mathcal{F}\left(\frac{1}{x+i0}\right)=\mathcal{F}\left(\text{p.v.}\frac{1}{x}\right)-\mathcal{F}(i\pi\delta_{0})=-i\pi\text{sign}(\xi)-i\pi.

  7. Notice that F(H(x))=12πiξ+δ02\displaystyle \mathcal{F}(H(x))=\frac{1}{2\pi i\xi}+\frac{\delta_{0}}{2}, so we know F(xk1x0)=k!(2πiξ)k+1+δ0(k)2(2πi)k\displaystyle \mathcal{F}(x^{k}\mathbf{1}_{x\ge0})=\frac{k!}{(2\pi i\xi)^{k+1}}+\frac{\delta_{0}^{(k)}}{2(-2\pi i)^{k}} from F(xu)=xF(u)2πi\displaystyle \mathcal{F}(xu)=-\frac{\partial_{x}\mathcal{F}(u)}{2\pi i}. Now we have F(P(x)1x0)=k=0nak(k!(2πiξ)k+1+δ0(k)2(2πi)k)\displaystyle \mathcal{F}(P(x)\mathbf{1}_{x\ge 0})=\sum_{k=0}^{n}a_{k}\left(\frac{k!}{(2\pi i\xi)^{k+1}}+\frac{\delta_{0}^{(k)}}{2(-2\pi i)^{k}}\right) for P(x)=k=0nakxk\displaystyle P(x)=\sum_{k=0}^{n}a_{k}x^{k}.

  8. We know 1(xi0)α+1={x+α1+eπi(α+1)xα1αNx+α1+(1)α+1xα1πi(1)α+1δ0(α)α!αN\displaystyle \frac{1}{(x-i0)^{\alpha+1}}=\begin{cases}x_{+}^{-\alpha-1}+e^{\pi i(\alpha+1)}x_{-}^{-\alpha-1}&\alpha\notin\mathbb{N}\\x_{+}^{-\alpha-1}+(-1)^{\alpha+1}x_{-}^{-\alpha-1}-\frac{\pi i(-1)^{\alpha+1}\delta_{0}^{(\alpha)}}{\alpha!}&\alpha\in \mathbb{N}\end{cases}, where xa={0x0xax<0\displaystyle x_{-}^{a}=\begin{cases}0&x\ge0\\|x|^{a}&x<0\end{cases}, by the representation of x+kx_{+}^{-k} in sense of distribution. Notice that 0+xαe2πixξdx=t=ε+iξlimε0+0+xαe2πtxdx=u=2πtxlimε0+0+uα(2πt)αeudu2πt=limε0+1(2πt)α+10+uαeudu=limε0+Γ(α+1)(2πt)α+1=Γ(α+1)(i2π)α+11(xi0)α+1\displaystyle \int_{0}^{+\infty}x^{\alpha}e^{-2\pi i x\xi}\mathrm{d}x\xlongequal{t=\varepsilon+i\xi}\lim_{\varepsilon\to0^{+}}\int_{0}^{+\infty}x^{\alpha}e^{-2\pi tx}\mathrm{d}x\xlongequal{u=2\pi tx}\lim_{\varepsilon\to0^{+}}\int_{0}^{+\infty}\frac{u^{\alpha}}{(2\pi t)^{\alpha}}e^{-u}\frac{\mathrm{d}u}{2\pi t}=\lim_{\varepsilon\to0^{+}}\frac{1}{(2\pi t)^{\alpha+1}}\int_{0}^{+\infty}u^{\alpha}e^{-u}\mathrm{d}u=\lim_{\varepsilon\to0^{+}}\frac{\Gamma(\alpha+1)}{(2\pi t)^{\alpha+1}}=\Gamma(\alpha+1)\left(-\frac{i}{2\pi}\right)^{\alpha+1}\frac{1}{(x-i0)^{\alpha+1}}, then we know the representation of F(pfx+α)\displaystyle \mathcal{F}(\operatorname{pf} x_{+}^{\alpha}).

  9. According to Problem 8, we know F(pfx+α)=Γ(α+1)(i2π)α+11(xi0)α+1=Γ(a+1)x+α1+eπi(α+1)xα1(2πi)α+1\displaystyle \mathcal{F}(\operatorname{pf}x_{+}^{\alpha})=\Gamma(\alpha+1)\left(-\frac{i}{2\pi}\right)^{\alpha+1}\frac{1}{(x-i0)^{\alpha+1}}=\Gamma(a+1)\frac{x_{+}^{-\alpha-1}+e^{\pi i(\alpha+1)}x_{-}^{-\alpha-1}}{(2\pi i)^{\alpha+1}}, where xa={0x0xax<0\displaystyle x_{-}^{a}=\begin{cases}0&x\ge0\\|x|^{a}&x<0\end{cases}.

  10. We have F(eαx2)=παe(πξ)2α\displaystyle \mathcal{F}\left(e^{\alpha x^{2}}\right)=\sqrt{\frac{\pi}{\alpha}}e^{-\frac{(\pi\xi)^{2}}{\alpha}} by Fourier transform table. So we get F(eix2)=πieiπ2ξ2\displaystyle \mathcal{F}\left(e^{-ix^{2}}\right)=\sqrt{\pi i}e^{-i\pi^{2}\xi^{2}}.