Solutions
  1. Notice that δ(k),φ=φ(k)(0)supφ(k)L(R)supαkφ(α)L(R)\displaystyle|\langle \delta^{(k)},\varphi \rangle|=|\varphi^{(k)}(0)|\le \left|\sup\left\|\varphi^{(k)}\right\|_{L^{\infty}(\mathbb{R})}\right|\le\left|\sup_{\alpha\le k}\left\|\varphi^{(\alpha)}\right\|_{L^{\infty}(\mathbb{R})}\right|. If its order is less than kk, we can assume that φ(n)(0)i=0n1φ(i)L(R)\displaystyle \left|\varphi^{(n)}(0)\right|\le \sum_{i=0}^{n-1}\left\|\varphi^{(i)}\right\|_{L^{\infty}(\mathbb{R})}.
    So we can take ψC[1,1]\displaystyle \psi\in C_{[-1,1]}^{\infty} satisfying that ψ(0)=1\displaystyle \psi(0)=1. Considering ψt(x)=ψ(tx)\displaystyle \psi_{t}(x)=\psi(tx), we have ψt(t)(x)=tnψ(tx)\displaystyle \psi_{t}^{(t)}(x)=t^{n}\psi(tx) and ψt(0)=tn\displaystyle \psi_{t}(0)=t^{n}. Let φ=ψt\varphi=\psi_{t}, we have tnP(t)\displaystyle \left|t^n\right|\le |P(t)|, where degPn1\displaystyle \deg P\le n-1. So there is the contradiction.

  2. MSE link We can use the "estimate-equivalence", that is, supαkφ(α)L(R)i=0kφ(i)L(R)\displaystyle \sup_{\alpha\le k}\left\|\varphi^{(\alpha)}\right\|_{L^{\infty}(\mathbb{R})}\simeq \sum_{i=0}^{k}\left\|\varphi^{(i)}\right\|_{L^{\infty}(\mathbb{R})}.
    Considering that there exist m,nZ\displaystyle m,n\in \mathbb{Z} in such that K\displaystyle K, which is the support of φ\displaystyle \varphi, satisfies K[m,n]\displaystyle K \subset[m,n]. Assuming that n>0n>0, then we can know it's a distribution from i=0φ(i)(i)i=0nφ(i)(i)i=0nφ(i)L(R)\displaystyle \left|\sum_{i=0}^{\infty}\varphi^{(i)}(i)\right|\le \left|\sum_{i=0}^{n}\varphi^{(i)}(i)\right|\le \sum_{i=0}^{n}\left\|\varphi^{(i)}\right\|_{L^{\infty}(\mathbb{R})}.
    If u\displaystyle u has a finite order, we can take K=[nδ,n+δ]\displaystyle K=[n-\delta,n+\delta] then have φ(n)(n)i=0n1φ(i)L(R)\displaystyle \left|\varphi^{(n)}(n)\right|\le \sum_{i=0}^{n-1}\left\|\varphi^{(i)}\right\|_{L^{\infty}(\mathbb{R})}. We can translate it by n\displaystyle -n. Thus we can just consider the case of φ(n)(0)\displaystyle \left|\varphi^{(n)}(0)\right|. Then proof has been finished by Problem 1.

  3. MSE link First, we can know the order won't be greater than 1 by using the mean value theorem: ξ(x,x)\displaystyle \exist \xi\in(-x,x) in such that 2φ(ξ)=φ(x)φ(x)x2\varphi'(\xi)=\frac{\varphi(x)-\varphi(-x)}{x} and 0+φ(x)φ(x)xdx=0aφ(x)φ(x)xdx2aφL(R)\displaystyle \left|\int_{0}^{+\infty}\frac{\varphi(x)-\varphi(-x)}{x}\mathrm{d}x\right|=\left|\int_{0}^{a}\frac{\varphi(x)-\varphi(-x)}{x}\mathrm{d}x\right|\le 2a\left\|\varphi'\right\|_{L^{\infty}(\mathbb{R})} if assuming that the support set of φ\displaystyle \varphi is subset of [a,a]\displaystyle [-a,a].
    We only need to show the order cannot be 0. Considering φt\displaystyle \varphi_{t} has support set of [t,4t][t,4t] and φt([2t,3t])1\displaystyle \varphi_{t}([2t,3t])\equiv1. Now vp1x,φt1tsupφtL(R)\displaystyle \left|\left\langle \text{vp}\frac{1}{x},\varphi_{t} \right\rangle\right|\ge \frac{1}{t}\sup\left\|\varphi_{t}\right\|_{L^\infty(\mathbb R)}. Let t\displaystyle t\to \infty, we know the order of vp1x\displaystyle \text{vp}\frac{1}{x} cannot be 0.

  4. We only need to prove that limε0+εεφ(x)xdx=0\displaystyle \lim_{\varepsilon\to 0+}\int_{-\varepsilon}^{\varepsilon}\frac{\varphi(x)}{x}\mathrm{d}x=0, which is equivalent to limε0+εεφ(x)xdx2εφ(0)=0\displaystyle \lim_{\varepsilon\to0^{+}}\left|\int_{-\varepsilon}^{\varepsilon}\frac{\varphi(x)}{x}\mathrm{d}x-2\varepsilon\varphi'(0)\right|=0.
    Considering that limx0+φ(x)x=φ(0)\displaystyle \lim_{x\to0^{+}}\frac{\varphi(x)}{x}=\varphi'(0), that is, φ(x)xφ(0)<ε0\displaystyle \left|\frac{\varphi(x)}{x}-\varphi'(0)\right|<\varepsilon_{0} when 0<x<δ\displaystyle 0<\left|x\right|<\delta. Assuming that ε<δ\displaystyle \varepsilon<\delta we have εεφ(x)xdx2εφ(0)εεφ(x)xφ(0)dx<2εε0\displaystyle \left|\int_{-\varepsilon}^{\varepsilon}\frac{\varphi(x)}{x}\mathrm{d}x -2\varepsilon\varphi'(0)\right|\le \int_{-\varepsilon}^{\varepsilon}\left|\frac{\varphi(x)}{x}-\varphi'(0)\right|\mathrm{d}x<2\varepsilon\varepsilon_{0}. Let ε0\displaystyle \varepsilon\to0, we know the limit is 0.

  5. MSE link We assume that it's a distribution. First, we can take a positive test function φ\displaystyle \varphi which is supported in [1,2][1,2]. Define that φj(x)=ej3φ(jx)\displaystyle \varphi_{j}(x)=e^{-\frac{j}{3}}\varphi(jx), which is supported in [1j,2j]\displaystyle \left[ \frac{1}{j},\frac{2}{j}\right], then it's obvious that φj(i)(x)=jiej3φ(jx)\displaystyle \varphi^{(i)}_{j}(x)=j^{i}e^{-\frac{j}{3}}\varphi(jx). We can consider that supφj(i)(x)=supjiej3φ(jx)0(j)\displaystyle \sup\left|\varphi^{(i)}_{j}(x)\right|=\sup\left|j^{i}e^{-\frac{j}{3}}\varphi(jx)\right|\to 0(j\to \infty). Now we have 0+e1xφj(x)dx=1j2je1xej3φ(jx)dx=12ejxj3lnjφ(x)dx12φ(x)dx=φL1.(j100)\displaystyle \int_{0}^{+\infty}e^{\frac{1}{x}}\varphi_{j}(x)\mathrm{d}x=\int_{\frac{1}{j}}^{\frac{2}{j}}e^{\frac{1}{x}}e^{-\frac{j}{3}}\varphi(jx)\mathrm{d}x=\int_{1}^{2}e^{\frac{j}{x}-\frac{j}{3}-\ln j}\varphi(x)\mathrm{d}x\ge \int_{1}^{2}\varphi(x)\mathrm{d}x=\left\|\varphi\right\|_{L^{1}}.(j\ge 100) Let jj\to \infty, we get 0+e1xφj(x)dx0\displaystyle \int_{0}^{+\infty}e^{\frac{1}{x}}\varphi_{j}(x)\mathrm{d}x\to0 because of the definition of distribution. So φL1=0\displaystyle \left\|\varphi\right\|_{L^{1}}=0, that is, φ0\varphi\equiv0. It's a contradiction.

  6. Consider fε,φ=R\[ε,2ε]φ(x)φ(0)x0dxε2εφ(0)xdx\displaystyle \left\langle f_{\varepsilon},\varphi \right\rangle=\int_{\mathbb{R}\backslash[-\varepsilon,2\varepsilon]}\frac{\varphi(x)-\varphi(0)}{x-0}\mathrm{d}x-\int_{\varepsilon}^{2\varepsilon}\frac{\varphi(0)}{x}\mathrm{d}x. Notice that the first term is bounded by using mean value theorem. We only need to focus ε2εφ(0)xdx=φ(0)ln2\displaystyle \int_{\varepsilon}^{2\varepsilon}\frac{\varphi(0)}{x}\mathrm{d}x=\varphi(0)\ln2. So the limit of distribution fε\displaystyle f_{\varepsilon} exists.

  7. Same to Problem 6, we just need to verify that ε2εφ(0)xdx\displaystyle \int_{\varepsilon^{2}}^{\varepsilon}\frac{\varphi(0)}{x}\mathrm{d}x is divergent. The integral equals to φ(0)lnε\displaystyle -\varphi(0)\ln\varepsilon and we know it's divergent by taking ε0+\displaystyle \varepsilon\to 0^{+}.

  8. We only prove that fdx=dμ\displaystyle f'\mathrm{d}x=\mathrm{d}\mu. If so, we have fφdx=φdμ\displaystyle \int f'\varphi\mathrm{d}x=\int\varphi\mathrm{d}\mu.
    Because of Lebesgue measure is absolutely continuous to measure μ\displaystyle \mu. So we have unique function h\displaystyle h satisfying hdx=dμ\displaystyle h\mathrm{d}x=\mathrm{d}\mu by Radon-Nikodym Theorem. And we know (,a)dμ=μ((,a))=(,a)hdx\displaystyle \int_{(-\infty,a)} \mathrm{d}\mu=\mu((-\infty,a))=\int_{(-\infty,a)} h\mathrm{d}x. So h=f\displaystyle h=f'.

  9. By using the corollary of Riesz Representation Theorem for monotonic function, we know that: there exists an unique regular Borel measure μ\mu satisfying that : μ((a,b])=f(b)f(a),<a<b<\mu((a,b])=f(b)-f(a),\forall-\infty<a<b<\infty
    μ((,b])=f(b)f(),<b<\mu((-\infty,b])=f(b)-f(-\infty),\forall-\infty<b<\infty
    μ((a,))=f()f(a),a<\mu((a,\infty))=f(\infty)-f(a),\forall -\infty\le a<\infty
    So we proved it by Problem 8.

  10. We have (x+α),φ=x+α,φ=0+xαφ(x)dx=0+xαdφ(x)=0+αxα1φ(x)dx=αx+α1,φ\displaystyle \left\langle (x_{+}^{\alpha})',\varphi\right\rangle=-\left\langle x_{+}^{\alpha},\varphi' \right\rangle =-\int_{0}^{+\infty}x^{\alpha}\varphi'(x)\mathrm{d}x=-\int_{0}^{+\infty}x^{\alpha}\mathrm{d}\varphi(x)=\int_{0}^{+\infty}\alpha x^{\alpha-1}\varphi(x)\mathrm{d}x=\left\langle \alpha x_{+}^{\alpha-1},\varphi \right\rangle. So as distributions, (x+α)\displaystyle (x^{\alpha}_{+})' equals to αx+α1\alpha x_{+}^{\alpha-1}.

  11. We have (x+α)(α),φ=(1)αx+α,φ(α)=(1)α0+xαφ(α)(x)dx=Use α times integration by parts0+α!φ(x)dx=α!Rχx0φ(x)dx=α!H(x),φ\displaystyle \left\langle (x_{+}^{\alpha})^{(\alpha)},\varphi \right\rangle=(-1)^{\alpha}\left\langle x_{+}^{\alpha},\varphi^{(\alpha)} \right\rangle=(-1)^{\alpha}\int_{0}^{+\infty}x^{\alpha}\varphi^{(\alpha)}(x)\mathrm{d}x\xlongequal{\text{Use }\alpha\text{ times integration by parts}}\int_{0}^{+\infty}\alpha!\varphi(x)\mathrm{d}x=\alpha!\int_{\mathbb{R}}\chi_{x\ge0}\varphi(x)\mathrm{d}x=\left\langle \alpha!H(x),\varphi \right\rangle. So as distributions, we know (x+α)(α)=α!H(x)\displaystyle (x_{+}^{\alpha})^{(\alpha)}=\alpha!H(x).

  12. By using integration by parts, we have εxαφ(x)dx=1α+1εφ(x)dxα+1=εα+1φ(ε)α+11α+1εxα+1φ(x)dx\displaystyle \int_{\varepsilon}^{\infty}x^{\alpha}\varphi(x)\mathrm{d}x=\frac{1}{\alpha+1}\int_{\varepsilon}^{\infty}\varphi(x)\mathrm{d}x^{\alpha+1}=-\frac{\varepsilon^{\alpha+1}\varphi(\varepsilon)}{\alpha+1}-\frac{1}{\alpha+1}\int_{\varepsilon}^{\infty}x^{\alpha+1}\varphi'(x)\mathrm{d}x. Thus we can define the distribution according to the problem.

  13. It's obvious that the support set of u\displaystyle u is {0}\displaystyle \left\{0\right\}. So we have u=k=0nCkδ0(k)\displaystyle u=\sum_{k=0}^{n}C_{k}\delta_{0}^{(k)}. Notice that, xδ0,φ=0φ(0)=0\displaystyle \left\langle x\delta_{0},\varphi \right\rangle=0\cdot\varphi(0)=0, xδ0,φ=δ0,φ+xφ=φ(0)\displaystyle \left\langle x\delta_{0}',\varphi \right\rangle=-\left\langle \delta_{0},\varphi+x\varphi' \right\rangle=-\varphi(0). Further, for any k1\displaystyle k\ge1, xδ0(k),φ≢0\displaystyle \left\langle x\delta_{0}^{(k)},\varphi \right\rangle\not\equiv0. Thus we have u=Cδ0\displaystyle u=C\delta_{0}.

  14. Notice that the support of uu is {0}\{0\}. Then u=k=0nCkδ0(k)\displaystyle u=\sum_{k=0}^{n}C_{k}\delta_{0}^{(k)}. By Problem 13, we know that u=δ0u=-\delta_{0}' is a particular solution. And the solutions for equation xu=0x\cdot u=0 are u=Cδ0\displaystyle u=C\delta_{0}. So the solutions for ux=δ0\displaystyle u\cdot x=\delta_{0} are Cδ0δ0\displaystyle C\delta_{0}-\delta_{0}'.

  15. Take ρCc(R)\displaystyle \rho\in C_{c}^{\infty}(\mathbb{R}) satisfying ρ(0)=1\displaystyle \rho(0)=1. Consider u~,φ=u~,φφ(0)ρ+φ(0)u~,ρ=C=u~,ρu~,φφ(0)ρ+Cδ0,φ=u,φφ(0)ρx+Cδ0,φ\displaystyle \left\langle \tilde u,\varphi\right\rangle=\left\langle \tilde u,\varphi-\varphi(0)\rho \right\rangle+\varphi(0)\left\langle \tilde u,\rho \right\rangle\xlongequal{C=\left\langle \tilde u,\rho \right\rangle}\left\langle \tilde u,\varphi-\varphi(0)\rho \right\rangle+\left\langle C\delta_{0},\varphi \right\rangle=\left\langle u,\frac{\varphi-\varphi(0)\rho}{x} \right\rangle+\left\langle C\delta_{0},\varphi \right\rangle. Notice that xδ0=0x\cdot\delta_0=0, so u~,φ=u,φφ(0)ρx\displaystyle \left\langle \tilde u,\varphi \right\rangle=\left\langle u,\frac{\varphi-\varphi(0)\rho}{x} \right\rangle. Now we have the definition of u~\displaystyle \tilde u.

  16. We just need to find a particular solution for the equation. Notice that pv1x\displaystyle \text{pv}\frac{1}{x} is a solution. So u=pv1x+Cδ0\displaystyle u=\text{pv}\frac{1}{x}+C\delta_{0}.

  17. First, we can notice that there exists a solution u=pv1x2\displaystyle u=\text{pv}\frac{1}{x^{2}}. So we have u=Cδ0+pv1x\displaystyle u=C\delta_{0}+\text{pv}\frac{1}{x}.

  18. We can find a solution u=x+α1\displaystyle u=x_{+}^{\alpha-1} so all solutions are x+α1+Cδ0\displaystyle x_{+}^{\alpha-1}+C\delta_{0}.

  19. MSE link 1, MSE link 2 We have 0=u+xu=(xu)\displaystyle 0=u+xu'=(xu)', so 0=(xu),φ=xu,φ\displaystyle 0=\left\langle (xu)',\varphi \right\rangle=-\left\langle xu,\varphi' \right\rangle. Notice that, v,φ=0\displaystyle \left\langle v,\varphi' \right\rangle=0 for all φD\displaystyle \varphi\in \mathcal{D} means v,ϕ=0\displaystyle \left\langle v,\phi \right\rangle=0 for all ϕD\displaystyle \phi\in \mathcal{D} satisfying ϕ=0\displaystyle \int\phi=0. So it's equivalent to xu=kxu=k. Then we fix ψ0D\displaystyle \psi_{0}\in \mathcal{D} with ψ0=1\displaystyle \int\psi_{0}=1. Let ψD,α=ψ,c=v,ψ0\psi\in \mathcal{D},\displaystyle \alpha=\int \psi,c=\left\langle v,\psi_{0} \right\rangle, now αψ0ψ=0\displaystyle \int\alpha\psi_{0}-\psi=0. So v,αψ0ψ=0\displaystyle \left\langle v,\alpha\psi_{0}-\psi \right\rangle=0, that is, v,ψ=v,αψ0=cψ\displaystyle \left\langle v,\psi \right\rangle=\left\langle v,\alpha\psi_{0} \right\rangle=c\int\psi.
    Then we know v=c\displaystyle v=c. Back to this problem, we know xu=k\displaystyle xu=k. Therefore we know u=Cδ0+kvp1x\displaystyle u=C\delta_{0}+k\text{vp}\frac{1}{x} by Problem 13,17.

  20. We can reduce the formula first: uλ,φ=λdu,φ\displaystyle \left\langle u_{\lambda},\varphi \right\rangle=\left\langle \lambda^{-d}u,\varphi \right\rangle equals to u,λφ(λx)\displaystyle \left\langle u,\lambda \varphi(\lambda x) \right\rangle. Thus we have 0+λdφ(x)φ(x)xdx=0+λφ(λx)φ(λx)xdx=t=λx0+λφ(t)φ(t)tdt\displaystyle \int_{0}^{+\infty}\lambda^{-d}\frac{\varphi(x)-\varphi(-x)}{x}\mathrm{d}x=\int_0 ^{+\infty}\lambda\frac{\varphi(\lambda x)-\varphi(-\lambda x)}{x}\mathrm{d}x\xlongequal{t=\lambda x}\int_{0}^{+\infty}\lambda\frac{\varphi(t)-\varphi(-t)}{t}\mathrm{d}t for u=vp1x\displaystyle u=\text{vp}\frac{1}x. Then we know vp1x\displaystyle \text{vp}\frac{1}{x} is a homogeneous distribution and its degree is 1\displaystyle -1. And we have 0+λdxαφ(x)dx=0+λxαφ(λx)dx=t=λx0+λαtαφ(t)dt\displaystyle \int_{0}^{+\infty}\lambda^{-d}x^{\alpha}\varphi(x)\mathrm{d}x=\int_{0}^{+\infty}\lambda x^{\alpha}\varphi(\lambda x)\mathrm{d}x\xlongequal{t=\lambda x}\int_{0}^{+\infty}\lambda^{-\alpha}t^{\alpha}\varphi(t)\mathrm{d}t. So we know it's a homogeneous distribution and its degree is α\displaystyle \alpha.

  21. Similar to Problem 20, we have λdφ(0)=λφ(0)\displaystyle \lambda^{-d}\varphi(0)=\lambda\varphi(0). Thus it's a homogeneous distribution and its degree is 1\displaystyle -1.

  22. First, we have λdu,φ=u,λnφ(λx)\displaystyle \left\langle \lambda^{-d}u,\varphi \right\rangle = \left\langle u,\lambda^{n} \varphi(\lambda x) \right\rangle. So λd+1x1u,φ=λd+1u,x1φ=λu,λn(x1φ)(λx)=u,λnx1(φ(λx))=x1u,λnφ(λx)\displaystyle \left\langle \lambda^{-d+1}\partial_{x_{1}}u,\varphi \right\rangle=\left\langle \lambda^{-d+1}u,-\partial_{x_{1}}\varphi \right\rangle=\left\langle \lambda u, -\lambda^{n}(\partial_{x_{1}}\varphi)(\lambda x)\right\rangle=\left\langle u,-\lambda^{n}\partial_{x_{1}}(\varphi(\lambda x)) \right\rangle=\left\langle \partial_{x_{1}}u,\lambda^{n}\varphi(\lambda x) \right\rangle. Then we know its degree is d1\displaystyle d-1.

  23. If they're C\mathbb{C}-linear independence, we have 0=a1u1,λnφ(λx)++aNuN,λnφ(λn)=a1λd1u1,φ++aNλdNuN,φ\displaystyle 0=\left\langle a_{1}u_{1},\lambda^{n}\varphi(\lambda x) \right\rangle+\dots+\left\langle a_{N}u_{N},\lambda^{n}\varphi(\lambda n) \right\rangle=a_{1}\lambda^{-d_{1}}\left\langle u_{1},\varphi \right\rangle+\dots+a_{N}\lambda^{-d_{N}}\left\langle u_{N},\varphi \right\rangle, aiC\displaystyle a_{i}\in \mathbb{C} and we assume d1<<dNd_{1}<\dots<d_{N} are degrees of u1,,uN\displaystyle u_{1},\dots,u_{N}. Multiply by λd1\displaystyle \lambda^{d_{1}} and let λ\displaystyle \lambda\to \infty, we will have a1u1,φ=0\displaystyle a_{1}\left\langle u_{1},\varphi \right\rangle=0. But u10u_{1}\neq 0, then we know a1=0\displaystyle a_{1}=0. Similarly, we know ai=0,i\displaystyle a_{i}=0,\forall i. That causes the contradiction.

  24. Let [m,m]n[-m,m]^{n} be the supset of the support set of φ\displaystyle \varphi. Now consider ψλ(x)=φ(ξ),ξi(λ0xi,λxi)\displaystyle \psi_{\lambda}(x)=\varphi'(\xi),\xi_{i}\in (\lambda_{0}x_{i},\lambda x_{i}) or (λxi,λ0xi),i\displaystyle (\lambda x_{i},\lambda_{0}x_{i}) ,\forall i. We only need to show ξiλ0xi,xi[m,m]\displaystyle \xi_{i}\to \lambda_{0}x_{i} , \forall x_{i}\in[-m,m] because of the continuity of φ\displaystyle \varphi'. We will show λxiλ0xi\displaystyle \lambda x_i\to \lambda_{0} x_{i} when λλ0\displaystyle \lambda\to\lambda_{0}. ε>0, δ=εm\displaystyle \forall \varepsilon>0,\ \exist \delta=\frac{\varepsilon}{m}, if λλ0<δ\displaystyle \left|\lambda -\lambda_{0}\right|<\delta, then λxλ0x<ε\displaystyle \left|\lambda x-\lambda_{0}x\right|<\varepsilon. So limλλ0ψλ(x)=φ(λ0x)\displaystyle \lim_{\lambda\to\lambda_{0}}\psi_{\lambda}(x)=\varphi'(\lambda_{0} x).

  25. Consider that u\displaystyle u being homogeneous distribution with degree of d\displaystyle d is equivalent to λ(n+d)u,φ=u,φ(λx)\displaystyle \lambda^{-(n+d)}\left\langle u,\varphi \right\rangle=\left\langle u,\varphi(\lambda x) \right\rangle. Then we take the derivative of λ\displaystyle \lambda, we will get (n+d)λ(n+d+1)u,φ=u,k=1nxkφxk(λx)=k=1nxku,φxk(λx)=k=1n(xku)xk,φ(λx)=k=1nu+xkuxk,φ(λx)=nu,φ(λx)k=1nuxk,φ(λx)\displaystyle -(n+d)\lambda^{-(n+d+1)}\left\langle u,\varphi \right\rangle=\left\langle u,\sum_{k=1}^{n}x_{k}\cdot\frac{\partial \varphi}{\partial x_{k}}(\lambda x) \right\rangle=\sum_{k=1}^{n}\left\langle x_{k}u,\frac{\partial\varphi}{\partial x_{k}}(\lambda x) \right\rangle=-\sum_{k=1}^{n}\left\langle \frac{\partial (x_{k}u)}{\partial x_{k}},\varphi(\lambda x) \right\rangle =-\sum_{k=1}^{n}\left\langle u+x_{k}\cdot\frac{\partial u}{\partial x_{k}},\varphi(\lambda x) \right\rangle=-n\left\langle u,\varphi(\lambda x) \right\rangle-\sum_{k=1}^{n}\left\langle \frac{\partial u}{\partial x_{k}},\varphi(\lambda x) \right\rangle. Now let λ=1\displaystyle \lambda=1, so we get duk=1nxkuxk,φ=0\displaystyle \left\langle d\cdot u-\sum_{k=1}^{n}x_{k}\cdot\frac{\partial u}{\partial x_{k}},\varphi \right\rangle=0 for any φD(Rn)\displaystyle \varphi\in \mathcal{D}(\mathbb{R}^{n}). Thus k=1nxkuxk=du\displaystyle \sum_{k=1}^{n}x_{k}\cdot\frac{\partial u}{\partial x_{k}}=d\cdot u.

  26. For the distribution with degree of 0\displaystyle 0, we have xu=0\displaystyle x\cdot u'=0 by Problem 25. And we know u=cδ0\displaystyle u'=c\delta_{0} by Problem 13. Because of H(x)=δ0\displaystyle H'(x)=\delta_{0}, it has a particular solution u=cH(x)\displaystyle u=cH(x). Then consider the general solution for u=0\displaystyle u'=0, which is u=k\displaystyle u=k by Problem 19. So the solutions are u=cH(x)+k\displaystyle u=cH(x)+k.
    For the distribution with degree of 1\displaystyle 1, we have xu=u\displaystyle x\cdot u'=u by Problem 25. Then we know xu=0\displaystyle x\cdot u''=0. So we know u=cH(x)+k\displaystyle u'=cH(x)+k by the degree of 00. And we know u=0\displaystyle u=0 when x=0x=0. Thus we know u={ax,x>0bx,x<0\displaystyle u=\begin{cases}ax,x>0\\bx,x<0\end{cases}.