Solutions
  1. MSE link We have επ(x2+ε2),φ=1π+εx2+ε2φ(x)dx=x=εy1π+φ(εy)1+y2dy\displaystyle\left\langle \frac{\varepsilon}{\pi(x^{2}+\varepsilon^{2})},\varphi \right\rangle=\frac{1}{\pi}\int_{-\infty}^{+\infty}\frac{\varepsilon}{x^{2}+\varepsilon^{2}}\varphi(x)\mathrm{d}x\xlongequal{x=\varepsilon y}\frac{1}{\pi}\int_{-\infty}^{+\infty}\frac{\varphi(\varepsilon y)}{1+y^{2}}\mathrm{d}y. Now let ε0\displaystyle \varepsilon\to0 and use Dominated Convergence Theorem, then we have limδ01π+φ(εy)1+y2dy=1π+φ(0)1+y2dy=φ(0)\displaystyle \lim_{\delta\to 0}\frac{1}{\pi}\int_{-\infty}^{+\infty}\frac{\varphi(\varepsilon y)}{1+y^{2}}\mathrm{d}y=\frac{1}{\pi}\int_{-\infty}^{+\infty}\frac{\varphi(0)}{1+y^{2}}\mathrm{d}y=\varphi(0), which equals to δ0,φ\left\langle \delta_{0},\varphi \right\rangle.

  2. Considering 1x+iε,φ=Rφ(x)dxx+iε=Rxφ(x)iεφ(x)x2+ε2dx=xx2+ε2,φiπδ0,φ\displaystyle \left\langle\frac{1}{x+i\varepsilon},\varphi\right\rangle=\int_{\mathbb{R}}\frac{\varphi(x)\mathrm{d}x}{x+i\varepsilon}=\int_{\mathbb{R}}\frac{x\varphi(x)-i\varepsilon\varphi(x)}{x^{2}+\varepsilon^{2}}\mathrm{d}x=\left\langle \frac{x}{x^{2}+\varepsilon^{2}},\varphi \right\rangle-\langle i\pi\delta_{0},\varphi\rangle by Problem 1, we can use Dominated Convergence Theorem so that we have limε0+1x+iε,φ=limε0+1x+iε,φ=vp1xiπδ0,φ\displaystyle \left\langle \lim_{\varepsilon\to0^+} \frac{1}{x+i\varepsilon},\varphi \right\rangle=\lim_{\varepsilon\to0^{+}}\left\langle \frac{1}{x+i\varepsilon},\varphi \right\rangle=\left\langle \text{vp}\frac{1}{x}-i\pi\delta_{0},\varphi \right\rangle. Now we know limε0+1x+iε=vp1xiπδ0\displaystyle \lim_{\varepsilon\to0^{+}}\frac{1}{x+i\varepsilon}=\text{vp}\frac{1}{x}-i\pi\delta_{0}.

  3. MSE link Let φ(x)=φ(0)ψ(x)+xθ(x)\displaystyle \varphi(x)=\varphi(0)\psi(x)+x\theta(x) where ψ\displaystyle \psi satisfying ψ(x)=1\displaystyle \psi(x)=1 when x[1,1]\displaystyle x\in[-1,1] and suppψ[2,2]\displaystyle \text{supp}\psi\subset[-2,2]. So we have sinnxx,φ=φ(0)11sinnxxdx+(21+12)ψ(x)xsinnxdx+suppθθ(x)sinnxdx\displaystyle \left\langle \frac{\sin nx}{x},\varphi \right\rangle=\varphi(0)\int_{-1}^{1}\frac{\sin nx}{x}\mathrm{d}x+\left(\int_{-2}^{-1}+\int_{1}^2\right)\frac{\psi(x)}{x}\sin nx\mathrm{d}x+\int_{\text{supp}\theta}\theta(x)\sin nx\mathrm{d}x. Then 11sinnxxdx=nnsinxxdx=n+π\displaystyle \int_{-1}^{1}\frac{\sin nx}{x}\mathrm{d}x=\int_{-n}^{n}\frac{\sin x}{x}\mathrm{d}x\xlongequal{n\to+\infty}\pi and we know the other terms vanish when n+\displaystyle n\to +\infty by Riemann's Lemma. Now we know limn+sinnxx,φ=πφ(0)=πδ0,φ\displaystyle \left\langle \lim_{n\to +\infty}\frac{\sin nx}{x},\varphi \right\rangle=\pi\varphi(0)=\left\langle \pi\delta_0,\varphi \right\rangle. That is, limn+sinnxx=πδ0\displaystyle \lim_{n\to +\infty}\frac{\sin nx}{x}=\pi\delta_0.

  4. We know E,φ=E,φ=1(2n)Sn1Rn1xn2φ(x)dx\displaystyle \left\langle \triangle E,\varphi \right\rangle=\left\langle E,\triangle \varphi \right\rangle=\frac{1}{(2-n)|\mathbf{S}^{n-1}|}\int_{\mathbb{R}^{n}}\frac{1}{|x|^{n-2}}\triangle \varphi(x)\mathrm{d}x. Then notice that 1(2n)xn2=i=1ni((i=1nxi2)n2xi)=i=1n(n(i=1nxi2)n+22xi2+(i=1nxi2)n2)=0\displaystyle \triangle\frac{1}{(2-n)|x|^{n-2}}=\sum_{i=1}^{n}\partial_{i}\left(\left(\sum_{i=1}^{n}x_{i}^{2}\right)^{-\frac{n}{2}}x_{i}\right)=\sum_{i=1}^{n}\left(-n\left(\sum_{i=1}^{n}x_{i}^{2}\right)^{-\frac{n+2}{2}}x_i^{2}+\left(\sum_{i=1}^{n}x_{i}^{2}\right)^{-\frac{n}{2}}\right)=0. So we have E,φ=1(2n)Sn1Rn1xn2φ(x)φ(x)1xn2dx=limε01(2n)Sn1xε1xn2φ(x)φ(x)1xn2dx=Green’s formulalimε01(2n)Sn1x=ε1xn2rφ(x)φ(x)r1xn2dσ\displaystyle \left\langle \triangle E,\varphi \right\rangle=\frac{1}{(2-n)|\mathbf{S}^{n-1}|}\int_{\mathbb{R}^{n}}\frac{1}{|x|^{n-2}}\triangle \varphi(x)-\varphi(x)\triangle \frac{1}{|x|^{n-2}}\mathrm{d}x=\lim_{\varepsilon\to0}\frac{1}{(2-n)|\mathbf{S}^{n-1}|}\int_{|x|\ge\varepsilon}\frac{1}{|x|^{n-2}}\triangle \varphi(x)-\varphi(x)\triangle \frac{1}{|x|^{n-2}}\mathrm{d}x\xlongequal{\text{Green's formula}}-\lim_{\varepsilon\to0}\frac{1}{(2-n)|\mathbf{S}^{n-1}|}\int_{|x|=\varepsilon}\frac{1}{|x|^{n-2}}\partial_{r}\varphi(x)-\varphi(x)\partial_{r} \frac{1}{|x|^{n-2}}\mathrm{d}\sigma. Consider that 0x=ε1xn2rφ(x)dσsuprφ(x)εn2x=εdσ=εSn1suprφ(x)ε00\displaystyle 0\le\left|\int_{|x|=\varepsilon}\frac{1}{|x|^{n-2}}\partial_r\varphi(x)\mathrm{d}\sigma\right|\le \frac{\sup|\partial_r\varphi(x)|}{\varepsilon^{n-2}}\int_{|x|=\varepsilon}\mathrm{d}\sigma=\varepsilon|\mathbf{S}^{n-1}|\sup|\partial_{r}\varphi(x)|\xrightarrow{\varepsilon\to 0}0 and limε01(2n)Sn1x=εφ(x)r1xn2dσ=limε01Sn1x=εφ(x)xn1dσ=φ(0)\displaystyle \lim_{\varepsilon\to 0}\frac{1}{(2-n)|\mathbf{S^{n-1}}|}\int_{|x|=\varepsilon}\varphi(x)\partial_{r}\frac{1}{|x|^{n-2}}\mathrm{d}\sigma=\lim_{\varepsilon\to0}\frac{1}{|\mathbf{S^{n-1}}|}\int_{|x|=\varepsilon}\frac{\varphi(x)}{|x|^{n-1}}\mathrm{d}\sigma=\varphi(0), thus we have E,φ=φ(0)\displaystyle \left\langle \triangle E,\varphi \right\rangle=\varphi(0), which means E=δ0\displaystyle \triangle E=\delta_0.

  5. We know one solution to u=f\displaystyle \triangle u=f is u0=Ef\displaystyle u_{0}=E*f, which implies u0C(Rn)\displaystyle u_{0}\in C^{\infty}(\mathbb{R}^{n}) because ED(Rn)\displaystyle E\in \mathcal{D}'(\mathbb{R}^{n}) and fD(Rn)\displaystyle f\in \mathcal{D}(\mathbb{R}^{n}). And notice that v=0\displaystyle \triangle v=0 means vD(Rn)\displaystyle v\in \mathcal{D}(\mathbb{R}^{n}), we know the solution is u=u0+cvC(Rn)\displaystyle u=u_{0}+cv\in C^{\infty}(\mathbb{R}^{n}).

  6. When n=3\displaystyle n=3, E(x)=14πx\displaystyle E(x)=-\frac{1}{4\pi|x|}. First, we can consider that Ef=f(y),E(xy)\displaystyle E*f=\left\langle f(y),E(x-y) \right\rangle. If f\displaystyle f is a singular distribution, we can find a function cluster {fε}C0(R3)\displaystyle \{f_{\varepsilon}\}\in C_{0}^{\infty}(\mathbb{R}^{3}) satisfying fεε0Df\displaystyle f_{\varepsilon}\xrightarrow[\varepsilon\to0]{\mathcal{D}'}f. Therefore we only need to prove the case of f\displaystyle f is regular, that is, R3f(y)dyxyCfx\displaystyle\left|\int_{\mathbb R^3}\frac{f(y)dy}{|x-y|}\right|\le \frac{C_f}{|x|}.
    Considering the support set of ff and assuming it's {a:a<R}\{a:|a|<R\}. Now when x2R|x|\ge2R, we have R3f(y)dyxy=yRf(y)dyxyyRf(y)dyx283πR3fmaxx\displaystyle\left|\int_{\mathbb R^3}\frac{f(y)dy}{|x-y|}\right|=\left|\int_{|y|\le R}\frac{f(y)dy}{|x-y|}\right|\le \left|\int_{|y|\le R}\frac{f(y)dy}{\left|\frac x 2\right|}\right| \le\frac{\frac83\pi R^3f_{\max}}{|x|}. So the inequality holds.

  7. Consider that (Ef),φ=(E)f,φ=δ0f,φ=f,φ\displaystyle \left\langle \triangle (E*f),\varphi \right\rangle=\left\langle (\triangle E)*f,\varphi \right\rangle=\left\langle \delta_{0}*f,\varphi \right\rangle=\left\langle f,\varphi \right\rangle, so we know u=Ef\displaystyle u=E*f is one solution. Then we need to prove that f(y),E(xy)+f,14πx<C2x2\displaystyle \left|\left\langle f(y),E(x-y) \right\rangle+\frac{\left\langle f,1 \right\rangle}{4\pi|x|}\right|<\frac{C_{2}}{|x|^{2}} when x\displaystyle |x|\to \infty. It's equivalent to R3f(y)4πxyf(y)4πxdy<C2x2\displaystyle \left|\int_{\mathbb{R}^{3}}\frac{f(y)}{4\pi|x-y|}-\frac{f(y)}{4\pi|x|}\mathrm{d}y\right|<\frac{C_{2}}{|x|^{2}}.
    Considering the support set of ff and assuming it's {a:a<R}\{a:|a|<R\}. Now when x2R|x|\ge2R, we have R3f(y)4πxyf(y)4πxdy=y<R(xxy)f(y)4πxyxdy14πy<Ryf(y)x22dy<R2πy<Rf(y)x2dy<2R4fmax3x2\displaystyle \left|\int_{\mathbb{R}^{3}}\frac{f(y)}{4\pi|x-y|}-\frac{f(y)}{4\pi|x|}\mathrm{d}y\right|=\left|\int_{|y|<R}\frac{(|x|-|x-y|)f(y)}{4\pi|x-y||x|}\mathrm{d}y\right|\le \left|\frac{1}{4\pi}\int_{|y|<R}\frac{|y|f(y)}{\frac{|x|^{2}}{2}}\mathrm{d}y\right|<\frac{R}{2\pi}\left|\int_{|y|<R}\frac{f(y)}{|x|^{2}}\mathrm{d}y\right|<\frac{2R^{4}f_{\max}}{3|x|^{2}}. So the inequality holds.

  8. MSE link We have u2+ε2=(uu2+ε2u)=(uu2+ε2)u+uu2+ε2u=uuu2+ε2+ε2u2(u2+ε2)3Duuu2+ε2\displaystyle \triangle \sqrt{u^{2}+\varepsilon^{2}}=\nabla\cdot\left(\frac{u}{\sqrt{u^{2}+\varepsilon^{2}}}\nabla u\right)=\nabla\left(\frac{u}{\sqrt{u^{2}+\varepsilon^{2}}}\right)\cdot\nabla u+\frac{u}{\sqrt{u^{2}+\varepsilon^{2}}}\triangle u=\frac{u\triangle u}{\sqrt{u^{2}+\varepsilon^{2}}}+\frac{\varepsilon^{2}|\nabla u|^{2}}{(\sqrt{u^{2}+\varepsilon^{2}})^{3}}\overset{\mathcal{D}'}{\ge}\frac{u\triangle u}{\sqrt{u^{2}+\varepsilon^{2}}}. Now take the limit for ε0\displaystyle \varepsilon\to0 and we have uDsign(u)u\displaystyle \triangle|u|\overset{\mathcal{D}'}{\ge}\text{sign}(u)\cdot\triangle u.