Solutions
  1. MSE link The case of m(E)=0m(E)=0 or fL(E)=0\|f\|_{_{L^{\infty}(E)}}=0 is trivial. When m(E)>0\displaystyle m(E)>0 and fL(E)>0\displaystyle \|f\|_{L^{\infty}(E)}>0, assuming c\displaystyle c satisfying 0<c<fL(E)\displaystyle 0<c<\|f\|_{L^{\infty}(E)}, there exists EcE\displaystyle E_{c}\subset E, which is measurable with m(Ec)>0\displaystyle m(E_{c})>0 and satisfies f>c\displaystyle |f|>c on Ec\displaystyle E_{c}. Then we have m1p(Ec)(Ecfp)1p(Efp)1pm1p(E)fL(E)\displaystyle m^{\frac{1}{p}}(E_{c})\le\left(\int_{E_{c}}|f|^{p}\right)^{\frac{1}{p}}\le\left(\int_{E}|f|^{p}\right)^{\frac{1}{p}}\le m^{\frac{1}p}(E)\|f\|_{L^{\infty}(E)}. Now let p\displaystyle p\to\infty, we know climpfLp(E)fL(E)\displaystyle c\le \lim_{p\to\infty}\|f\|_{_{L^{p}(E)}}\le\|f\|_{L^{\infty}(E)}, that is limpfLp(E)=fL(E)\displaystyle \lim_{p\to \infty}\|f\|_{_{L^{p}(E)}}=\|f\|_{_{L^{\infty}(E)}}, by the arbitrariness of cc.

  2. MSE link Using Holder inequality, we can get this conclusion by Ef(x)qdx(Ef(x)qpqdx)qp(E1ppqdx)pqp=(Ef(x)pdx)qp(m(E))pqp<\displaystyle \int_{E}\left|f(x)\right|^{q}\mathrm{d}x\le\left(\int_{E}\left|f(x)\right|^{q\cdot \frac{p}{q}}\mathrm{d}x\right)^{\frac{q}{p}}\left(\int_{E}1^{\frac{p}{p-q}}\mathrm{d}x\right)^{\frac{p-q}{p}}=\left(\int_{E}\left|f(x)\right|^{p}\mathrm{d}x\right)^{\frac{q}{p}}\left(m(E)\right)^{\frac{p-q}{p}}<\infty when 0<qp\displaystyle 0<q\le p\le \infty, immediately.

  3. For the case of 1q<p<\displaystyle 1\le q<p<\infty, let f(x)=x1p10<x1\displaystyle f(x)=x^{-\frac{1}{p}}\mathbf{1}_{0<x\le1}, we have fLq\displaystyle f\in L^{q} but fLp\displaystyle f\notin L^{p}, so Lp⊄Lq\displaystyle L^{p}\not\subset L^{q}. Then let g(x)=(1+x)1q\displaystyle g(x)=(1+x)^{-\frac{1}{q}}, we have gLp\displaystyle g\in L^{p} but gLq\displaystyle g\notin L^{q}, so Lq⊄Lp\displaystyle L^{q}\not\subset L^{p}. For the case of p=,q<\displaystyle p=\infty,q<\infty, let h(x)=x12q10<x1\displaystyle h(x)=x^{-\frac{1}{2q}}\mathbf{1}_{0<x\le1}, we have hLq,hL\displaystyle h\in L^{q},h\notin L^{\infty} and 1RL,1RLq\displaystyle \mathbf{1}_{\mathbb{R}}\in L^{\infty},\mathbf{1}_{\mathbb{R}}\notin L^{q}, so Lp⊄Lq\displaystyle L^{p}\not\subset L^{q} and Lq⊄Lp\displaystyle L^{q}\not\subset L^{p}.

  4. From Real Analysis by Folland If fLpf \in L^p, let E={x:f(x)>1}E = \{x : |f(x)| > 1\} and set g=fχEg = f \chi_E and h=fχEch = f \chi_{E^c}.
    Then gr=frχEfqχE|g|^r = |f|^r \chi_E \leq |f|^q \chi_E, so gLrg \in L^r, and hs=fsχEcfqχEc|h|^s = |f|^s \chi_{E^c} \leq |f|^q \chi_{E^c}, so hLsh \in L^s.
    (For s=s = \infty, obviously h1\|h\|_\infty \leq 1.)

  5. By Holder inequality, we know fgLpp=Rf(x)g(x)pdx(Rf(x)qdx)pq(Rg(x)rdx)pr=fLqpgLrp\displaystyle \|fg\|^{p}_{L^{p}}=\int_{\mathbb{R}}\left|f(x)g(x)\right|^{p}\mathrm{d}x\le\left(\int_{\mathbb{R}}\left|f(x)\right|^{q}\mathrm{d}x\right)^{\frac{p}{q}}\left(\int_{\mathbb{R}}|g(x)|^{r}\mathrm{d}x\right)^{\frac{p}{r}}=\left\|f\right\|_{L^{q}}^{p}\left\|g\right\|_{L^{r}}^{p}, that is, fgLpfLqgLr\displaystyle \|fg\|_{L^{p}}\le\|f\|_{L^{q}}\|g\|_{L^{r}}.

  6. From Classical Fourier Analysis by Loukas Grafakos Let g(x)=f(x)x1qpLp(R+,dxx)g(x)=|f(x)| x^{1-\frac{q}{p}} \in L^p\left(\mathbb{R}^{+},\frac{dx}{x}\right) and h(x)=xqpχ[1,)L1(R+,dxx)h(x)=x^{-\frac{q}{p}} \chi_{[1, \infty)} \in L^1\left(\mathbb{R}^{+},\frac{dx}{x}\right). Now compute
    (gh)(x)=0f(t)t1qp(xt)qpχ[1,)(xt)dtt=xqp0xf(t)dt(g * h)(x)=\int_0^{\infty}|f(t)| t^{1-\frac{q}{p}}\left(\frac{x}{t}\right)^{-\frac{q}{p}} \chi_{[1, \infty)}\left(\frac{x}{t}\right) \frac{d t}{t}=x^{-\frac{q}{p}} \int_0^x|f(t)| d tsince xt[1,)\frac{x}{t} \in[1, \infty) if and only if t(0,x]t \in(0, x]. We have
    ghLp=(0(0xf(t)dt)pxqdxx)1p=(0(0xf(t)dt)pxq1dx)1p\|g * h\|_{L^p}=\left(\int_0^{\infty}\left(\int_0^x|f(t)| d t\right)^p x^{-q} \frac{d x}{x}\right)^{\frac{1}{p}}=\left(\int_0^{\infty}\left(\int_0^x|f(t)| d t\right)^p x^{-q-1} d x\right)^{\frac{1}{p}}
    also
    gLp=(0f(t)ptpq1dt)\|g\|_{L^p}=\left(\int_0^{\infty}|f(t)|^p t^{p-q-1} d t\right)
    and
    hL1=0tqpχ[1,)dtt=1tqp1dt=pq\|h\|_{L^1}=\int_0^{\infty} t^{-\frac{q}{p}} \chi_{[1, \infty)} \frac{d t}{t}=\int_1^{\infty} t^{-\frac{q}{p}-1} d t=\frac{p}{q}
    The desired inequality now follows from Minkowski's inequality.

  7. From Real Analysis by Folland If s=s=\infty, we have fqfqpfp|f|^q \leq\|f\|_{\infty}^{q-p}|f|^p and θ=p/q\theta=p / q, so
    fqfpp/qf1(p/q)=fpθf1θ.\|f\|_q \leq\|f\|_p^{p / q}\|f\|_{\infty}^{1-(p / q)}=\|f\|_p^\theta\|f\|_{\infty}^{1-\theta} .
    If s<s<\infty, we use Holder's inequality, taking the pair of conjugate exponents to be p/θqp / \theta q and s/(1θ)qs /(1-\theta) q :
    fq=fθqf(1θ)qfθqp/θqf(1θ)qs/(1θ)q=[fp]θq/p[fs](1θ)q/s=fpθqfs(1θ)q\begin{aligned} \int|f|^q & =\int|f|^{\theta q}|f|^{(1-\theta) q} \leq\left\||f|^{\theta q}\right\|_{p / \theta q}\left\||f|^{(1-\theta) q}\right\|_{s /(1-\theta) q} \\ & =\left[\int|f|^p\right]^{\theta q / p}\left[\int|f|^s\right]^{(1-\theta) q / s}=\|f\|_p^{\theta q}\|f\|_s^{(1-\theta) q} \end{aligned}
    Taking qq th roots, we are done.

  8. From Real Analysis by Folland First, if gCcg \in C_c, for y1|y| \leq 1 the functions τhg\tau_h g are all supported in a common compact set KK, so
    τhggpτhggpm(K)0 as y0\int\left|\tau_h g-g\right|^p \leq\left\|\tau_h g-g\right\|_\infty^p m(K) \rightarrow 0 \text { as } y \rightarrow 0
    Now suppose fLpf \in L^p. If ϵ>0\epsilon>0, by the density of CcC_{c} function, there exists gCcg \in C_c with gfp<ϵ/3\|g-f\|_p<\epsilon / 3, so
    τhffpτh(fg)p+τhggp+gfp<23ϵ+τhggp,\left\|\tau_h f-f\right\|_p \leq\left\|\tau_h(f-g)\right\|_p+\left\|\tau_h g-g\right\|_p+\|g-f\|_p<\frac{2}{3} \epsilon+\left\|\tau_h g-g\right\|_p,
    and τhggp<ϵ/3\left\|\tau_h g-g\right\|_p<\epsilon / 3 if yy is sufficiently small.

  9. MSE link Notice that Lp([0,1])L1([0,1])\displaystyle L^{p}([0,1])\subset L^{1}([0,1]) for 1p\displaystyle 1\le p\le \infty, then fL1([0,1])\displaystyle f\in L^{1}([0,1]). We can know 01p(t)f(t)dt=0\displaystyle \int_{0}^{1}p(t)f(t)\mathrm{d}t=0 for any polynomial p(t)\displaystyle p(t) from the condition. Notice that ex2\displaystyle e^{-x^{2}} can be regard as a polynomial because of Taylor's formula, we have fδ=1πδ01f(x)e(xy)2δ2dy=0\displaystyle f_{\delta}=\frac{1}{\sqrt{\pi}\delta}\int_{0}^{1}f(x)e^{-\frac{(x-y)^{2}}{\delta^{2}}}\mathrm{d}y=0. And because of fδfL10\displaystyle \|f_{\delta}-f\|_{L^{1}}\to0 when δ0\displaystyle \delta\to0, we have f0\displaystyle f\equiv0.

  10. MSE link Consider a sequence {fz}L([0,1]),fz(x)={0x[0,z]1x(z,1],z[0,1]\displaystyle \{f_{z}\}\in L^{\infty}([0,1]),f_{z}(x)=\begin{cases}0&x\in[0,z]\\1&x\in(z,1]\end{cases},z\in[0,1], we know mn,fmfnL=1\displaystyle \forall m\neq n,\|f_{m}-f_{n}\|_{L^{\infty}}=1. So for any gL\displaystyle g\in L^{\infty}, there is at most only one fa\displaystyle f_{a} satisfying gfaL<12\displaystyle \|g-f_{a}\|_{L^{\infty}}<\frac{1}{2}. So for any countable set {gk}L\displaystyle \{g_{k}\}\in L^{\infty}, there exists f{fz}\displaystyle f\in \{f_{z}\} satisfying fgkL12,k\displaystyle \|f-g_{k}\|_{L^{\infty}}\ge \frac{1}{2},\forall k. Then {gk}\displaystyle \{g_{k}\} won't exist countable dense subset of L\displaystyle L^{\infty}. Therefore, L\displaystyle L^{\infty} isn't separable.