
Some computational results on numbers of the
form p+ 2k and p+ Fn
Joint work with Huixi Li and Xiangjun Dai

Yuda Chen
May 5, 2024

School of Mathematical Sciences, Nankai University

On numbers of the form p+ 2k

History of research on problems related to p+ 2k

d(N) = |{n≤N:n=p+2k,p prime}|
N .

d = lim infn→∞ d(n) and d = lim supn→∞ d(n)

In 1934, Romanoff proved that d > 0.
In 2004, Chen and Sun improved it to d > 0.0868.
In 2006, Pintz found d > 0.093626.
In 2010, Habsieger and Sivak-Fischler obtained
d > 0.0936275.
In 2018, Elsholtz and Schlage-Puchta achieved the best
result so far: d > 0.107648.

1

History of research on problems related to p+ 2k

d(N) = |{n≤N:n=p+2k,p prime}|
N .

d = lim infn→∞ d(n) and d = lim supn→∞ d(n)

In 1849, de Polignac found that 127 and 959 can’t be
written as a sum of a prime number and a power of 2.
In 1950, van der Corput demonstrated in 1950 that odd
integers not of the form p+ 2k possess a positive density.
In 1950, Erdős proved that d ≤ 0.49999991.
In 2006, Habsieger and Roblot improved it to d < 0.4909.
In 2024, Chen, Dai, and Li achieved the best result so far:
d < 0.490341088858244.

2

History of research on problems related to p+ 2k

d(N) = |{n≤N:n=p+2k,p prime}|
N .

d = lim infn→∞ d(n) and d = lim supn→∞ d(n)

Conjecture (Romani, 1983)
d = d = d.

Conjecture (Gianna del Corso, Ilaria del Corso, Dvornicich, and
Romani, 2020)
If the above conjecture is true, d ≈ 0.437.

3

The original algorithm by Habsieger and Roblot (2006)

fM (m) =
{
k ∈ Z/ord2(M)Z : m− 2k ∈ (Z/MZ)∗

}
gM (I) = {m ∈ Z/MZ : fM (m) = I}
GM (I) = |gM (I)| forI ⊂ Z/ord2(M)Z

For a prime p, we have Ip,0 = Z/ord2(p)Z with
Gp(Ip,0) = p− ord2(p) and Ip,j = (Z/ord2(p)Z) \

{
j
}
with

Gp(Ip,j) = 1 for each j ∈ Z/ord2(p)Z.

GM1 (I1) =
∑

I1=̃I2∩̃Ip

GM2 (I2)Gp (Ip), δM (ν) =
∑
|I|=ν

GM (I)

d ≤
ord2(M)∑
ν=0

δM (ν)min

(
1
M ,

2ν
ord2(M)φ (M) log 2

)
.

4

The explanation of algorithm by Habsieger and Roblot (2006)

The simplest case: 3× 5 ord2(3) = 2,ord2(5) = 4.

Ĩp

I1 = Ĩ2 ∩ Ĩp Ĩ2 {0} {1} {0,1}

{0,1,2}
{0,1,3}
{0,2,3}
{1,2,3}
{0,1,2,3}

5

The explanation of algorithm by Habsieger and Roblot (2006)

The simplest case: 3× 5 ord2(3) = 2,ord2(5) = 4.

Ĩp

I1 = Ĩ2 ∩ Ĩp Ĩ2 {0,2} {1,3} {0,1,2,3}

{0,1,2}
{0,1,3}
{0,2,3}
{1,2,3}
{0,1,2,3}

6

The explanation of algorithm by Habsieger and Roblot (2006)

The simplest case: 3× 5 ord2(3) = 2,ord2(5) = 4.

Ĩp

I1 = Ĩ2 ∩ Ĩp Ĩ2 {0,2} {1,3} {0,1,2,3}

{0,1,2} {0,2} {1} {0,1,2}
{0,1,3} {0} {1,3} {0,1,3}
{0,2,3} {0,2} {3} {0,2,3}
{1,2,3} {2} {1,3} {1,2,3}
{0,1,2,3} {0,2} {1,3} {0,1,2,3}

7

The explanation of algorithm by Habsieger and Roblot (2006)

The simplest case: 3× 5 ord2(3) = 2,ord2(5) = 4.

Ĩp

I1 = Ĩ2 ∩ Ĩp Ĩ2 {0,2} {1,3} {0,1,2,3}

{0,1,2} {0,2} {1} {0,1,2}
{0,1,3} {0} {1,3} {0,1,3}
{0,2,3} {0,2} {3} {0,2,3}
{1,2,3} {2} {1,3} {1,2,3}
{0,1,2,3} {0,2} {1,3} {0,1,2,3}

d ≤
ord2(15)∑
ν=0

δ15 (ν)min

(
1
15

,
2ν

ord2(15)φ (15) log 2

)

=0+ 4min

(
1
15

,
2× 1

ord2(15)φ (15) log 2

)
+ 6min

(
1
15

,
2× 2

ord2(15)φ (15) log 2

)
+ 4min

(
1
15

,
2× 3

ord2(15)φ (15) log 2

)
+min

(
1
15

,
2× 4

ord2(15)φ (15) log 2

)
8

The explanation of algorithm by Habsieger and Roblot (2006)

The simplest case: 3× 5 ord2(3) = 2,ord2(5) = 4.

Ĩp

I1 = Ĩ2 ∩ Ĩp Ĩ2 {0,2} {1,3} {0,1,2,3}

{0,1,2} {0,2} {1} {0,1,2}
{0,1,3} {0} {1,3} {0,1,3}
{0,2,3} {0,2} {3} {0,2,3}
{1,2,3} {2} {1,3} {1,2,3}
{0,1,2,3} {0,2} {1,3} {0,1,2,3}

d ≤
ord2(15)∑
ν=0

δ15 (ν)min

(
1
15

,
2ν

ord2(15)φ (15) log 2

)

=0+ 4min

(
1
15

,
2× 1

ord2(15)φ (15) log 2

)
+ 6min

(
1
15

,
2× 2

ord2(15)φ (15) log 2

)
+ 4min

(
1
15

,
2× 3

ord2(15)φ (15) log 2

)
+min

(
1
15

,
2× 4

ord2(15)φ (15) log 2

)
9

The explanation of algorithm by Habsieger and Roblot (2006)

Another simple case: 3× 5× 7 ord2(3× 5) = 4,ord2(7) = 3.

1 1 1 4

Ĩ2

I1 = Ĩ2 ∩ Ĩp Ĩp {0,1} {0,2} {1,2} {0,1,2}

1 {0}
1 {1}
1 {2}
1 {3}
3 {0,2}
3 {1,3}
1 {0,1,2}
1 {0,1,3}
1 {0,2,3}
1 {1,2,3}
1 {0,1,2,3}

10

The explanation of algorithm by Habsieger and Roblot (2006)

Another simple case: 3× 5× 7 ord2(3× 5) = 4,ord2(7) = 3.

1 1 1 4

Ĩ2

I1 = Ĩ2 ∩ Ĩp Ĩp
{0,1,3,4,6,7,9,10} {0,2,3,5,6,8,9,11} {1,2,4,5,7,8,10,11} {0,1,2,3,4,5,6,7,8,9,10,11}

1 {0,4,8} Quadruple
1 {1,5,9} Quadruple
1 {2,6,10} Quadruple
1 {3,7,11} Quadruple
3 {0,2,4,6,8,10} Triple Triple Triple Duodecuple
3 {1,3,5,7,9,11} Triple Triple Triple Duodecuple
1 {0,1,2,4,5,6,8,9,10} Quadruple
1 {0,1,3,4,5,7,8,9,11} Quadruple
1 {0,2,3,4,6,7,8,10,11} Quadruple
1 {1,2,3,5,6,7,9,10,11} Quadruple
1 {0,1,2,3,4,5,6,7,8,9,10,11} Quadruple

11

Trying to enhancing the algorithm

The efficiency of the above algorithm is too low—calculating
the result of M=31× 19× 17× 13× 11× 7× 5× 3 takes over
about 40 minutes.

Firstly, we divided it into 2 groups and compute the results of
them respectively. This is because we don’t need to compute
that in some special order. Then we used 0− 1 matrix to
improve running speed. By using Python’s Numpy package to
enabling multi-core CPU computing, it can accelerate the
speed by hundreds of times, even one thousand times in some
cases.

12

Trying to enhancing the algorithm

By using the above methods, although solving problems of
running speed, the memory usage is substantial. When
computing the upper bound for d corresponding to the set of
10 primes {3, 5, 7, 11, 13, 17, 19, 31, 41, 73}, the required memory
has surpassed 64GB.

Dai suggests that, to conserve memory and expedite the
process, we can introduce a new single-column matrix, known
as the multiplicity matrix, to store the multiplicity of each row’s
corresponding set in the family of sets. Consequently, when
conducting the Hadamard product on two rows, we only need
to multiply the corresponding elements in the multiplicity
matrix. Furthermore, after each intersection operation
between clusters of sets is completed, a deduplication
operation is executed. 13

Trying to enhancing the algorithm

With these improvements, it enables the calculation of the
upper bound for d corresponding to the set of 12 primes

{3, 5, 7, 11, 13, 17, 19, 31, 41, 733, 241, 257}

in just 24 minutes on a computer with 16GB of memory and an
i9-13980HX CPU.

Notation: According to Habsieger and Roblot’s paper (2006),
they only spent 35 minutes computing it on an Intel Xeon 2.4
GHz processor with a memory stack of 2.1GB.

14

Utilizing GPU computing to further improve efficiency

By utilizing GPU computation implemented through Python’s
CuPy package, we can conserve approximately one-third of the
memory and significantly increase the speed, with the exact
rate depending on the GPU performance. On a computer with
16GB of memory, an i9-13980HX CPU, and an RTX4070 Laptop
GPU, the computation with the set of 12 primes

{3, 5, 7, 11, 13, 17, 19, 31, 41, 73, 241, 257}

considered by Habsieger and Roblot can be completed in just 3
minutes.

15

Our results

Theorem
We have d < 0.490341088858244.

With above enhanced algorithm, on a platform with 1536GB of
memory, two E5-2697v2 CPUs, and a V100 GPU, it took
approximately 167 hours to obtain d < 0.490341088858244
when using the set

{3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 61, 73}

for our computation.

Why choosing this set?

16

Our results

We begin by analysing some data for the set

{3, 5, 7, 11, 13, 17, 19, 31, 41, 73, 241, 257}

used in Habsieger and Roblot’s paper (2006). We list the
process of expanding the set 3 to include the primes
mentioned, adding them one by one, along with the
corresponding decrease in the upper bound estimates for d.

17

Our results

Set of primes Estimates for d Improvements
{3} 0.5
{3, 5} 0.5 0
{3, 5, 7} 0.5 0
{3, 5, 7, 11} 0.49807089 0.00192911
{3, 5, 7, 11, 13} 0.49621815 0.00185274
{3, 5, 7, 11, 13, 17} 0.49252410 0.00369405
{3, 5, 7, 11, 13, 17, 19} 0.49185782 0.00066628
{3, 5, 7, 11, 13, 17, 19, 31} 0.49143385 0.00042397
{3, 5, 7, 11, 13, 17, 19, 31, 41} 0.49115839 0.00027546
{3, 5, 7, 11, 13, 17, 19, 31, 41, 73} 0.49107930 0.00007909
{3, 5, 7, 11, 13, 17, 19, 31, 41, 73, 241} 0.49098557 0.00009373
{3, 5, 7, 11, 13, 17, 19, 31, 41, 73, 241, 257} 0.49089834 0.00008723

18

Our results

{3, 5, 7, 11, 13, 17, 19, 31, 41, 73, 241, 257} 0.49089834 control group
{3, 5, 7, 11, 13, 17, 19, 23, 31, 41, 73, 241, 257} 0.49069465 added 23
{3, 5, 7, 11, 13, 17, 19, 31, 37, 41, 73, 241, 257} 0.49062325 added 37
{3, 5, 7, 11, 13, 17, 19, 31, 41, 61, 73, 241, 257} 0.49074788 added 61
{3, 5, 7, 11, 13, 17, 19, 31, 41, 73, 127, 241, 257} 0.49081180 added 127

To decrease d, we need to choose a set with more prime
numbers and make the product smaller. According to the data
above, we replaced 257 with 37.

19

Our results

{3, 5, 7, 11, 13, 17, 19, 31, 41, 73, 241, 257} 0.49089834
{3, 5, 7, 11, 13, 17, 19, 31, 37, 41, 73, 241} 0.49070248 control group
{3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 41, 73, 241} 0.49060796 added 23
{3, 5, 7, 11, 13, 17, 19, 31, 37, 41, 61, 73, 241} 0.49056186 added 61

According to the data above, we added 61.

20

Our results

{3, 5, 7, 11, 13, 17, 19, 31, 37, 41, 61, 73, 241} 0.49056186 control group
{3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 61, 73} 0.49041415 replaced 241 with 29
{3, 5, 7, 11, 13, 17, 19, 31, 37, 41, 53, 61, 73} 0.49060353 replaced 241 with 53
{3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 41, 61, 73} 0.49062494 replaced 241 with 23

To make the product smaller, according to the data above, we
replaced 241 with 29.

21

Our results

Since the effects of replacing 241 with 23 and 53 are similar,
while 23 < 53 and ord2(23) < ord2(53), we decide to add 23 to
save computation time, resulting in the following outcome.

{3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 61, 73} 0.490341088858244

Is there a general scheme for finding the set of prime
numbers which can generate the best result?

22

Some counterexamples

First, if we choose the set consisting of the first 12 odd prime
numbers, then this gives the best result among all choices of
sets with 12 odd primes we have tested.

{3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41} 0.49064273

This leads us to believe that the set of first m odd primes will
generate the best result among all choices of sets with m odd
primes.

23

Some counterexamples

However, we have the following counterexample.

Counterexample
For certain values of m, some set P with m odd primes, which
is different from the set of the first m odd primes, may yield a
better upper bound estimate for d.

{3, 5, 7, 11, 13, 17} 0.49252410448328
{3, 5, 7, 13, 17, 241} 0.49243452466582

The reason of this is mainly because 3, 5, 7, 13, 17, 241 are all
prime factors of 224− 1, while ord2(3× 5× 7× 11× 13× 17) = 120.

24

Some counterexamples

Therefore, we can guess if |P1| = |P2| and
ord2(

∏
p∈P1

p) < ord2(
∏
p∈P2

p), then P1 generates a better
result than P2. Unfortunately, this is still incorrect.

Counterexample
For some sets of primes P1 and P2 with |P1| = |P2| and
ord2(

∏
p∈P1

p) < ord2(
∏
p∈P2

p), the upper bound for d
generated from P1 may not necessarily be superior to what P2
produces.

{3, 5, 7, 11, 13, 31, 41, 61, 151, 331, 1321} 0.49431157054919 base 2 order = 60
{3, 5, 7, 11, 13, 17, 19, 31, 41, 73, 241} 0.49098556503467 base 2 order = 360

25

Some counterexamples

Finally, we found the following counterexample.

Counterexample
For two sets of primes P and Q, if among all qi ∈ Q, the best two results of the upper
bounds generated from P

∪
{qi} are P

∪
{q1} and P

∪
{q2}, then the upper bound

generated from P
∪
{q1, q2} is not necessarily the best among the upper bounds

generated from P
∪
q1,qj∈Q{qi, qj}. For example,

{3, 5, 7, 11, 17, 19} 0.494609133024577 best
{3, 5, 7, 11, 17, 23} 0.494870288038247 second best
{3, 5, 7, 11, 17, 29} 0.494883239281366 worst

However, according to the table below, the result generated from {3, 5, 7, 11, 17, 19, 23}
is not the best.

{3, 5, 7, 11, 17, 19, 23} 0.494486144723180
{3, 5, 7, 11, 17, 19, 29} 0.494213278918742 best
{3, 5, 7, 11, 17, 23, 29} 0.494618822711737

26

Arithmetic progression found by Erdős

Theorem (Erdős, 1950)
7629217 (mod 11184810) does not contain integers of the form
p+ 2k.

For every positive integer k, at least one of the following
conditions must be satisfied:

k ≡ 0 (mod 3)
k ≡ 1 (mod 4)
k ≡ 3 (mod 8)
k ≡ 7 (mod 12)
k ≡ 23 (mod 24)
k ≡ 0 (mod 2)

=⇒

2k ≡ 1 (mod 7)
2k ≡ 2 (mod 5)
2k ≡ 23 (mod 17)
2k ≡ 27 (mod 13)
2k ≡ 223 (mod 241)
2k ≡ 1 (mod 3)

27

Arithmetic progression found by Erdős

So if integer x satisfies the following conditions, there must be
x− 2k = mp,m ∈ Z,p ∈ {3, 5, 7, 13, 17, 241}:

x− 20 ≡ 0 (mod 7)
x− 21 ≡ 0 (mod 5)
x− 23 ≡ 0 (mod 17)
x− 27 ≡ 0 (mod 13)
x− 223 ≡ 0 (mod 241)
x− 20 ≡ 0 (mod 3)

By Chinese Reminder Theorem, we have

x ≡ 7629217 (mod 11184810)

And after verification, x− 2k ̸= 3, 5, 7, 13, 17, 241, then it can’t be
prime.

28

The construction method of arithmetic progressions

Note the connection between Z−covering systems and
arithmetic progressions, we only need to find Z−covering
systems.

The following are some methods that use this method to
generate arithmetic progressions:
D {d1,d2, · · · ,dn} {m1,m2, · · · ,mn} corresponding arithmetic progressions a (mod b)
36 {2,3,4,9,12,18,36} {1,2,3,8,11,17,35} 309547193 (mod 412729590)
48 {2,4,6,8,16,24,48} {1,2,0,0,4,4,44} 13982215829 (mod 21448163730)
60 {2,3,4,5,10,12,15,20,30,60} {0,1,3,3,5,9,11,17,29,59} 520864019678683 (mod 2520047004605130)
72 {2,4,6,8,18,24,36,72} {1,2,4,6,16,22,34,70} 12878054009 (mod 44153328030)
80 {2,4,5,8,10,16,20,40,80} {0,1,3,3,7,7,15,31,79} 154854279578189723614177 (mod 483570327845851669882470)

Are there infinitely many such arithmetic progressions?

29

The construction method of arithmetic progressions

Theorem (Bang, 1886)
For any integer m > 1 and m ̸= 6, there exists a prime p such
that p divides 2m − 1 and p does not divide 2m̃ − 1 for any
m̃ < m.

Theorem
Let {m1 (mod d1),m2 (mod d2), · · · ,mn (mod dn)} be a
minimal covering system with distinct moduli such that
lcm(d1,d2, · · · ,dn) = D. Then {1 (mod 2), 2m1 (mod 2d1), 2m2
(mod 2d2), · · · , 2mn (mod 2dn)} is a minimal covering system
with distinct moduli such that lcm(2, 2d1, 2d2, · · · , 2dn) = 2D.

30

The smallest tolerance of arithmetic progressions with the prop-
erty

Conjecture (Yonggao Chen, 2023)
If an arithmetic progression a (mod b) does not contain
numbers of the form p+ 2k, then b ≥ 11184810.

The conjecture above has been proved by computation in our
paper (2024). Moreover, if an arithmetic progression a
(mod 11184810) does not contain numbers of the form p+ 2k,
then it is one of the 48 arithmetic progressions.

31

Proving the minimization of tolerances by computation

Consider Dirichlet’s theorem, we can shift numbers which are
coprime with the modulo. For case of 10:

All odds in sense of modulo 10:

1 3 5 7 9

All numbers coprime with 10:

1 3 7 9

Shifted by 21:
1 3 5 9

Shifted by 22:
1 3 5 7

The last 2 rows cover all odds in sense of modulo 10, so 10 is a
counterexample.

32

Proving the minimization of tolerances by computation

Using this method, we checked all even integers less than
11184810. The execution time is approximately 5 hours,
confirming a positive answer to Chen’s.

33

Proving the minimization of tolerances by computation

Number even integers up to 11184808 sifted such that a given
number of shifts to cover:

1 2 3 4 5 6 7 8
23 819307 1656377 1239765 295021 850127 7737 364486
9 10 11 12 13 14 15 16

6984 105003 838 176378 0 6195 5 27723
17 18 19 20 21 22 23 24
0 1169 0 22003 0 35 0 11441
25 26 27 28 29 30 31 32
0 0 0 578 0 7 0 130
33 34 35 36 37 38 39 40
0 0 0 496 0 0 0 434
41 42 43 44 45 46 47 48
0 0 0 0 0 0 0 141
49 50 51 52 53 54 55 56
0 0 0 0 0 0 0 0
57 58 59 60 61 62 63 64
0 0 0 0 0 0 0 0
65 66 67 68 69 70 71 72
0 0 0 0 0 0 0 1

34

Proving the minimization of tolerances by computation

From table we see more than 95% of the even integers from 2
to 11184818 are sifted with no more than 10 shifts, all but one
even integer 9699690 are sifted with at most 48 shifts, while
9699690 is sifted with 72 shifts. For the extreme values, our
data shows that the 23 numbers corresponding to the number
1 are 2i, where 1 ≤ i ≤ 23. The single number corresponding to
72 is 9699690 = 2× 3× 5× 7× 11× 13× 17× 19 with 8 distinct
prime divisors. The 141 numbers corresponding to 48 include
510510, 881790, · · · , 11091990. They are not necessarily
square-free, but they all have 7 distinct prime divisors.

35

Proving the minimization of tolerances by computation

36

On numbers of the form p+ Fn

History of research on problems related to p+ Fn

Theorem (Šiurys, 2016)
2019544239293395 (mod 2111872080374430) does not contain
integers of the form pα ± Fn.

Notice that, period of Fibonacci number mod 2111872080374430
is 360.

37

Our research on problems related to p+ Fn

We start by checking numbers with period of 720. And we
found the following conclusion.

Theorem
208641 (mod 17160990), 218331 (mod 17160990), 520659
(mod 17160990) · · · (110intotal) does not contain integers of the
form p+ Fn.

38

Our research on problems related to p+ Fn

Soon we found that there exist arithmetic progressions with
tolerance of 312018(= 17160990/55).

Theorem
208641 (mod 312018), 218331 (mod 312018) does not contain
integers of the form p+ Fn.

This makes us think about whether 312018 is the smallest
tolerance of arithmetic progressions with this property.

39

Proving the minimization of tolerances by computation

Similar to the case of p+ 2k, because of the modular
periodicity of Fibonacci numbers, we can also use Dirichlet’s
theorem, deal with it by shifting numbers.

40

Proving the minimization of tolerances by computation

For case of 10:

All numbers in sense of modulo 10:

0 1 2 3 4 5 6 7 8 9

All numbers coprime with 10:

1 3 7 9

Shifted by 0 = F0 :
1 3 7 9

Shifted by 1 = F1 :
0 2 4 8

Shifted by 2 = F3 :
1 3 5 9

Shifted by 3 = F4 :
0 2 4 6

The last 4 rows cover all numbers in sense of modulo 10, so 10 is a counterexample.

41

Proving the minimization of tolerances by computation

Theorem
Let S be the set of positive odd integers not of the form p+ Fn.
We have 208641 (mod 312018) and 218331 (mod 312018) are the
only two arithmetic progressions in S with modulus 312018.

42

Explanation from the perspective of covering system

We claim that the arithmetic progression 208641 (mod 312018)
corresponds to the covering system.

Since the remainders of the Fibonacci numbers modulo 2 are
1, 1, 0, 1, 1, 0, · · · with period 3, we know n ≡ 1 or 2 (mod 3) is
equivalent to Fn ≡ 1 (mod 2). So when x ≡ 1 (mod 2) and
n ≡ 1 or 2 (mod 3), we have x− Fn ≡ 0 (mod 2). Similarly,
when x ≡ 0 (mod 3) and n ≡ 4 or 8 (mod 8), we have
x− Fn ≡ 0 (mod 3), etc.

43

Explanation from the perspective of covering system

1, 2 (mod 3) 1 (mod 2)
4, 8 (mod 8) 0 (mod 3)

7, 9, 10, 14 (mod 16) 6 (mod 7)
0, 9, 18, 27 (mod 36) 0 (mod 17)

3, 8, 15 (mod 18) 2 (mod 19)
6, 18 (mod 48) 8 (mod 23)

Therefore, for every term x ∈ 208641 (mod 312018) and every
n ≥ 0, we have x− Fn is divisible by some prime
p ∈ {2, 3, 7, 17, 19, 23}. This shows the arithmetic progression
208641 (mod 312018) corresponds to the covering system
constructed above.

44

Explanation from the perspective of covering system

The case of the arithmetic progression 218331 (mod 312018) is
similar to 208641 (mod 312018), so we just present the
following table and omit the explanation.

1, 2 (mod 3) 1 (mod 2)
4, 8 (mod 8) 0 (mod 3)

1, 2, 6, 15 (mod 16) 1 (mod 7)
0, 9, 18, 27 (mod 36) 0 (mod 17)

3, 8, 15 (mod 18) 2 (mod 19)
30, 42 (mod 48) 15 (mod 23)

45

Any Questions?
math.yuda.chen@gmail.com

46

Thanks!
math.yuda.chen@gmail.com

47

	On numbers of the form p + 2k
	On numbers of the form p+Fn

